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The pyramid wavefront sensor (PWFS) can provide the sensitivity needed for demanding adaptive optics appli-
cations, such as imaging exoplanets using the future extremely large telescopes of over 30 m of diameter (D).
However, its exquisite sensitivity has a limited linear range of operation, or dynamic range, although it can
be extended through the use of beam modulation—despite sacrificing sensitivity and requiring additional optical
hardware. Inspired by artificial intelligence techniques, this work proposes to train an optical layer—comprising a
passive diffractive element placed at a conjugated Fourier plane of the pyramid prism—to boost the linear re-
sponse of the pyramid sensor without the need for cumbersome modulation. We develop an end-2-end simulation
to train the diffractive element, which acts as an optical preconditioner to the traditional least-square modal phase
estimation process. Simulation results with a large range of turbulence conditions show a noticeable improvement
in the aberration estimation performance equivalent to over 3λ∕D of modulation when using the optically pre-
conditioned deep PWFS (DPWFS). Experimental results validate the advantages of using the designed optical
layer, where the DPWFS can pair the performance of a traditional PWFS with 2λ∕D of modulation. Designing
and adding an optical preconditioner to the PWFS is just the tip of the iceberg, since the proposed deep optics
methodology can be used for the design of a completely new generation of wavefront sensors that can better fit the
demands of sophisticated adaptive optics applications such as ground-to-space and underwater optical commu-
nications and imaging through scattering media. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.502245

1. INTRODUCTION

The optics of a wavefront sensor (WFS) aim to modify the op-
tical field such that the integrated intensity field at the detector
can be used to infer the phase of the incoming wavefront. This
is the case of the Shack–Hartmann WFS (SHWFS)–the work-
horse of WFSs [1] widely used in astronomy [2] and ophthal-
mology [3], which samples the pupil plane by an array of
microlenses that are then imaged onto a detector array, where
the displacements of the imaged local point spread functions
(PSFs) are proportional to the local slopes of the wavefront.
Nonetheless, limitations of the SHWFS [4] in terms of sensi-
tivity and phase resolution have prompted the development of a
novel family of WFSs that work in the Fourier plane [5], and
among them, the pyramid wavefront sensor (PWFS) [6]. The
PWFS samples the complex PSF by a four-sided pyramid that
projects four versions of the pupil onto the detector array,
where the slopes of the wavefront, as well as the phase, can
be computed per pixel.

WFSs are at the core of adaptive optics (AO) systems [7],
where the PWFS stands out, thanks to its exquisite sensitivity
and superb performance, being already tested in current AO
systems for large telescopes (8–10 m in diameter) [8,9] in de-
manding instruments for exoplanet hunting, for instance, mak-
ing it an ideal candidate to serve novel AO systems in future
extremely large telescope projects (25–40 m in diameter) [10].
Nevertheless, despite its great sensitivity, the PWFS has a lim-
ited linear response, which must be counteracted by the addi-
tion of beam modulation at the expense of a diminished
sensitivity. This problem is known as the trade-off between sen-
sitivity and linearity (or sd factor) and has been extensively
studied for Fourier-based WFSs [5].

With the growing popularity of deep learning (DL) [11],
techniques based on convolutional neural networks have been
proposed to improve the inference process of a variety of WFSs
[12–16], including the PWFS [17], where the linearity can also
be extended with varying degrees of success. The main caveat,
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though, is that deep neural nets are not very flexible to chang-
ing conditions related to real atmospheric turbulence, requiring
massive data sets to improve its generalization ability [12], plus
forcing the training of a new model for each change in either
modal base length, resolution, or modulation, among others.

On the other hand, novel DL applications in computational
imaging have incorporated trainable optical elements into op-
tical sensing architectures, which are physically modeled within
a neural network, where they can be optimized through an end-
2-end (E2E) optimization framework [18,19]. This approach,
also known as deep optics, has shown successful results in the
design of optimized coded apertures and diffractive elements
for novel spectral imaging sensors [20].

In the search for improving the PWFS dynamic range while
trying to maintain its sensitivity goodness without the need for
modulation, in this work, we seek to incorporate a diffractive
element into the optical path of the PWFS that can be trained
by taking into account the reconstruction method through an
E2E scheme. Even though in the literature there has already
been an attempt to replace dynamic modulation by incorporat-
ing a diffusing plate in an intermediate pupil plane [21,22], in
our initial exploration we propose to place the designed diffrac-
tive optical layer at a conjugate Fourier plane before the pyra-
mid, maintaining its classification as a Fourier-plane WFS. This
choice might become advantageous, since Fourier-plane WFSs,
such as the PWFS, offer fewer noise propagation issues, in con-
trast with pupil plane WFSs such as the SHWFS [23,24].

Thus, the E2E design process for the new deep PWFS
(DPWFS) incorporates the optical propagation model for
the PWFS plus the diffractive layer up to the detector. Although
any phase recovery algorithm can be used to retrieve the phase
out from the intensity measured by the detector, including
deep neural nets, we only consider the standard least-squares
modal reconstruction, since it is a well-known method used
by the AO community. Then, by using the overall modal/phase
reconstruction error as the optimization goal, the diffractive op-
tical layer is updated by backpropagating the error. As a result,
the diffractive layer of the DPWFS finally acts as an optical
preconditioner that can improve the performance of the
PWFS forward model and linear reconstruction combination,
extending the linear range of operation.

A clear potential advantage of the new approach is that it can
improve a current PWFS by only adding the diffractive element
at the proper position into the optical path, without changing
the operational and calibration procedures already performed in
current systems. The designed system has been extensively
tested in simulations and also experimentally validated in the
PULPOS optical bench [25], where the results show that the
performance of a traditionally modulated PWFS can be
achieved by the proposed DPWFS without the need for
modulation.

2. THEORY

A. Monochromatic Pyramid Wavefront Sensing
Any nonmodulated PWFS system can be generalized by the
optical setup shown in Fig. 1. This scheme is divided into three
planes by optical transformations: the pupil plane—where the
wave is filtered by the telescope aperture and then is focused;

the Fourier plane—where the pyramidal prism is placed; and
the sensing plane—where the measurement is taken by a focal-
plane array.

The incoming electromagnetic wave can be described as

ψ i�x, y� �
ffiffiffi
n

p
IP�x, y�e�−j

2π
λ ϕi�x, y��, (1)

where λ is the wavelength, n is the number of incoming pho-
tons passing through the pupil IP , �x, y� are the spatial dimen-
sions, and ϕi represents the aberrated wavefront. Then, the
wave ψ i is focused and propagated to the pyramid apex as

ψ p�f x , f y� � F �ψ i�O�f x , f y�, (2)

where F �·� is the Fourier transform and the term O is the op-
tical transformation associated with the pyramidal prism
following

O�f x , f y� � I�f x , f y�e�−j
2π
λ P�f x , f y��, (3)

where the phase P is defined by the physical shape of the pyra-
mid. Notice that the pyramid is placed on the Fourier plane
of the optical path, acting as a frequency-space filter; for that
reason, a change in the coordinate system from �x, y� to
�f x , f y� is applied. Ideally, the prism is perfectly translucent,
producing no changes to the wave amplitude, simplifying
Eq. (3) as follows:

O�f x , f y� � e�−j2πλ P�f x , f y��: (4)

The PWFS is a special case of O, designed by Ragazzoni [6]
as a generalization of the Foucault’s knife-edge test. It is a trans-
parent squared pyramid with an apex angle θ, where each quad-
rant imposes a local tip/tilt phase in order to split the focused
beam into four subpupils. Figure 2 shows examples of the
pyramid phase with different values of θ, along with their re-
spective intensity distribution I�x, y� at the sensing plane,
obtained as

I�x, y� � jF −1�ψp�f x , f y��j2, (5)

where F −1 is the inverse Fourier transform.
The PWFS uses an angle θ such that the projected subpupils

are not overlapped, such as in Fig. 2(f ). To simplify the nota-
tion, we define I�ϕi� as the measurement of the PWFS for a
wave ψ i�ϕi� with an arbitrary phase ϕi. The recovery of ϕi
from I is an inverse problem that can be solved by optimization
algorithms such as least squares using the interaction matrix, as
will be further explained in Section 3.A.1.

Focusing 
mirror/lens 

Pupil plane Sensing plane Fourier plane 

Pyramid 
prism + lens

Sensor

f f

Fig. 1. Simplified optical scheme for pyramid Fourier-based wave-
front sensing.
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Nevertheless, the PWFS has shown to have great sensitivity,
though it has a very limited linear range. The sensitivity/linear-
ity trade-off has been thoroughly analyzed in the literature, and
this relationship is further expanded in Section 2.B. In Ref. [6],
Ragazzoni proposed to enhance the linear response of the
PWFS by modulating the incoming wavefront around the apex
of the pyramid. A measure for the modulation is often denoted
by kλ∕D, whereD is the diameter of the projected subpupil and
k is the number of times the diffraction-limited PSF fits into
the modulation radius rm � D∕2. Beam modulation as an op-
tical transformation can be modeled as follows:

M �x, y, t� � e−jϕmod�x, y, t�

ϕmod�t� �
2π

λ
rm�cos�2πt�Z −1

1 � sin�2πt�Z 1
1�, (6)

where Z −1
1 and Z 1

1 are the Zernike coefficients of tip and tilt,
respectively. Thus, the modulated intensity Im at the sensing
plane is given by

Im�ϕi� �
Z

1

0

I�ϕi � ϕmod�t��w�t�dt, (7)

where w�t� is a weight function that accounts for the number of
photons spread across the modulation cycle, satisfyingR
1
0 w�t�dt � 1. Note that ϕi is independent of time, forcing
the dynamics of ϕmod to be faster than the coherence time
of the turbulence, e.g., in frozen turbulence [26].

In summary, the modulated PWFS acquisition can be rep-
resented as

Im�ϕi� �
Z

1

0

j�ψ i�ϕi�M�x, y, t�w�t�� ⋆ F −1�O�f x , f y��j2dt,

(8)

where ⋆ represents the convolution operator.

B. Sensitivity and Linearity
The desired goal for any WFS design is to have a great sensi-
tivity s and a large linear response d (or dynamic range). As
presented in Ref. [5], they can be computed as

s�ϕi� � kIml �ϕi�k2 d �ϕi� � �kImq�ϕi�k2�−1, (9)

where Iml is the linear term, Imq the quadratic term, and k · k2
the l2-norm. Both the modulated linear and quadratic terms are
defined as
Iml �ϕi�

�
Z

1

0

2ℑ��IPejϕmod�t�⋆F �O����IPejϕmod�t�ϕi⋆F �O���w�t�dt,

Imq�ϕi��
Z

1

0

�jIPejϕmod�t�ϕi⋆F �O�j2�w�t�dt

−

Z
1

0

�ℜ��IPejϕmod�t�⋆F �O���IPejϕmod�t�ϕ2
i ⋆F �O����w�t�dt ,

(10)
where ℑ�·� is the imaginary part of its argument while ℜ�·� is
the real part. A thorough analysis of the pyramid sensitivity and
the implications in noise propagation can be found in Ref. [24].
Now, to show the trade-off between s and d , where larger is
better, we can additionally define the SD factor, sd , as the
modified product of the sensitivity and linearity defined as
follows:

sηd 1∕η�ϕi� � �kIml �ϕi�k2�η�kImq�ϕi�k2�−1∕η, (11)

where η is used to prioritize one over the other. This definition
is useful to predict the performance of the PWFS for a given
Zernike mode Z i by simply evaluating sd �Z i�.

3. DIFFRACTIVE OPTICAL LAYER

The PWFS provides a great sensitivity at the expense of a very
limited linearity range. As explained before, the dynamic range
can be extended by either oscillating the pyramid [6] or by us-
ing a tip/tilt mirror (TTM). Besides sacrificing sensitivity in the
process, active modulation poses great problems, such as
additional optical alignment and calibration, TTM-to-sensor
synchronization, moving parts lifetime, and an extended optical
path.

This fact motivates the rationale behind this work, where we
want to change the modulation function M for a passive, tem-
poral-independent optical transformation, defined as

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a)–(c) Pyramids simulated with different values of θ; (d)–(f ) respective intensity distributions of a propagated plane wave passing through
pyramids (a)–(c) into the sensing plane. With a larger θ, the subpupils of the pyramid are farther apart from each other for the same D∕2f ratio.
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D�f x , f y� � AE�f x , f y�e
DE�f x , f y �

λ , (12)

where AE is the amplitude element that acts as a frequency fil-
ter, while the diffractive element (DE) acts as a preconditioner
to the pyramid phase aimed at mimicking the TTM modula-
tion with a passive element. Therefore, if we replace the active
modulationM with the designed phase modulationD, then the
new DPWFS intensity measurement at the sensing plane can
be expressed by

Id�ϕi� � jψ i�ϕi� ⋆ F −1�D�f x , f y�O�f x , f y��j2: (13)

We believe that a well-designed D can lead to a superior
optical transformation O that can manage the trade-off be-
tween sensitivity and linearity without the need for additional
active optical elements.

A. Optical Design
We can design the diffractive optical elementD through a data-
driven E2E training strategy, as depicted in Fig. 3. To achieve
this, we use a data set of known incoming wavefronts generated
with a variety of real turbulence conditions. Our initial strategy
relies on using a turbulence range where the nonlinearity of the
PWFS becomes more evident. By simulating the physical
propagation, each wavefront is measured by the particular in-
stance of the DPWFS—comprising the optical transformation
O, that includes D, plus the detector—generating an output
image from the detector. Then, we solve the respective inverse
problem, calibrating the particular instance of the DPWFS to
generate the Zernike modal phase estimates, which are used to
compute the estimation error through a given loss function.
Then, by backpropagating the loss, we can update the discre-
tized optical layer D using a classical neural net optimizer such
as gradient descent. Thus, every discretized portion ofD can be
considered as a weight of the physical optical neural network,
where the amplitude and/or phase can be potentially updated in
proportion to the computed error. The whole E2E training pro-
cess is repeated until convergence is reached.

To finish with a physically realizable optical layer D, we
need to constrain the solution of the optimization to ensure
that D is always a passive phase element. Therefore, the am-
plitude of D is constrained as

AE�f x , f y� � 1, (14)

where AE is defined in Eq. (12) and 1 is a matrix full of ones.
With this constraint, the only learnable parameters are the
phase map pixels of D, denoted as DE.

To alleviate the degrees of freedom and ease the simulation
of the forward model, we decided to fix the location of D
within the DPWFS at a conjugate Fourier plane to the tip of
the pyramid. In this way, the programmable optical DE can be
thought of as an optical preconditioner to the pyramid in the
PWFS, so it could even be placed on top of the pyramid if
printed in an optical diffractive material [27] or jointly dis-
played in a spatial light modulator (SLM), as in the digital
PWFS implementation [28].

Note that the linear model block in Fig. 3 can be substituted
with deep neural networks, such as CNNs [12], to extract the
incoming wavefront (either phase or modes) from measured
intensities. However, in this work, we focus on using traditional
modal least-square inversion of the system matrix, which is also
the mainstream method currently adopted by the AO commu-
nity. Consequently, the only element of the DPWFS being op-
timized is the optical layer DE�f x , f y�, which indeed works as
a preconditioner to the inversion of the linear system matrix.

1. Least-Squares Phase Estimation
We can map the input wavefronts ϕi and the measured inten-
sities Id�ϕi� by creating a linear model based on some orthogo-
nal basis such as Zernike or Karhunen–Loève. For this work,
we focus on the Zernike basis, considering a Zernike approxi-
mation of an incoming phase such as ϕi �

PN
k�1 akZ k, where

Z are the normalized Zernike coefficients and a is the weight
vector. Thus, we build the system or interaction matrix (IM) by
concatenating the detector’s intensity response for each Zernike
mode as

M � �Vec�Id�Z 1��,Vec�Id�Z 2��,…,Vec�Id�ZN ���2, (15)

where Vec�·� is the vectorization operator, �·�2 represents the
concatenation on the second dimension, and N defines the
number of Zernike modes to be used in the reconstruction fol-
lowing Noll’s sequence. With the system matrix M, we can
obtain a Zernike basis representation of ϕi such that

Incoming 
wavefront

Forward 
pass

Backward
 pass

DetectorOptical 
transformation

Linear Model

Wavefront Sensor

Trainable 
parameters

Optical transformation
Diffractive 
Element Pyramid

Fig. 3. DPWFS E2E sensing and reconstruction scheme. An arbitrary phase map of a turbulence profile enters the simulated optical system with
the optical layer DE in the forward pass of the DPWFS. Then, a linear estimation of the phase is performed with the pseudo-inverse of the system
matrix. The loss function is computed with the error between the Zernike coefficient estimation and the Zernike decomposition of the known phase
map. Finally, the error is backpropagated to update each pixel of the DE.
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a � M†Vec�Id�ϕi�� :� N DE�ϕi�, (16)

where M† is the Moore–Penrose pseudo-inverse of the system
matrixM. Then, the forward sensing and recovery operator for
the E2E learning process can be represented as N DE, using ϕi
as input andbai as the output, as seen in Fig. 3.

2. End-2-End Optimization
Considering that DE is the only learnable element in the for-
ward modelN DE, the proposed E2E optimization scheme con-
sists in solving the following optimization problem:

cDE � argmin
DE

L�ϕi� :�
1ffiffiffiffiffi
N

p
L

XL
i

kN DE�ϕi� − aik2, (17)

where cDE represents the optimal phase distribution for the op-
tical layer, and fϕi, aigLi�1 accounts for the training data set of L
element pairs of wavefronts and their Zernike decompositions,
respectively. The chosen loss function L is the root-mean-
square error (RMSE). It is worth mentioning that M is within
N DE, so a new calibration step of the forward system matrix is
necessary for every training iteration; after all, the optical trans-
formation O changes at every step of the training process.

During training, the gradients are responsible for updating
the values of the DE parameters following the chain rule,

∂L
∂DE

� ∂L
∂N DE

∂N DE

∂DE
, (18)

where the design of the diffractive layer is directly influenced by
the loss function. Many DL toolboxes such as TensorFlow or
PyTorch automatically carry out this differentiation process
with their embedded functions.

4. RESULTS AND DISCUSSION

A. Data Generation and Training
The E2E model shown in Fig. 3 is implemented in PyTorch,
based on the OOMAO toolbox [29] for the physical modeling
of the PWFS/DPWFS forward propagation up to the detector.
For training and testing, we use the Kolmogorov/von Karman
model [30] to generate synthetic phase maps for different levels
of turbulence defined by D∕r0, as implemented in OOMAO.
Our baseline resolution is 128 × 128 with a sensing subsam-
pling of 4×. Our strategy to enforce a larger dynamic range
was to train the DE of the DPWFS using turbulence samples
beyond the linear response of the unmodulated PWFS. For
training, we randomly generated 10,000 phase maps with dif-
ferent amounts of turbulence levels within two ranges,
D∕r0 � 15 to 40 (DWPFS-R1) and D∕r0 � 5 to 20
(DWPFS-R2). The phase decomposition is performed with
22 Zernike modes without pistons (modes 2–23 under
Noll’s sequence). Although using more Zernike modes may
lead to better performance, in our case it also leads to an in-
creased computational load during the training process, since
the size of the system matrix that must be computed at every
iteration is proportional to the number of Zernike modes.
Therefore, while also knowing that most of the turbulence en-
ergy is concentrated into low-order Zernike modes, we limit the
simulation resolution and number of Zernike coefficients,
reducing the number of floating-point operations in the

GPU and the number of gradients to be computed and stored,
preventing VRAM saturation.

Typical r0 values at visible wavelengths for a good place in
Europe range within 4–6 cm [31], while a good place in
northern Chile often ranges within 10–20 cm [32]. If we con-
sider a telescope of 1.5 m, it leads to an overall D∕r0 range
between 7.5 and 38. Therefore, for testing we generated phase
maps on demand for an extended range betweenD∕r0 � 1 and
50, while decomposing the phase maps using 66 Zernike
modes. In this way, we test for the generalization ability of
the system in terms of both turbulence strength and phase
resolution.

Every iteration starts by computing the new system matrix
M using an amplitude of 0.1 for the Zernike coefficients,
where the PWFS is often calibrated for maximum sensitivity
at low turbulence levels. Then, every training input phase
map is propagated through the physical forward model, and
the measured image is used to compute the estimated
Zernike coefficients obtained by the least-squares algorithm.
Once calculating the RMSE between the estimated and
ground-truth Zernike coefficients, we can update the optical
layer N DE through the backpropagation process offered by
PyTorch. The optimizer of each pixel in the DE is updated
using decoupled weight decay regularization (AdamW) [33],
a stochastic optimization method that decouples the weight de-
cay in the gradient step of a traditional ADAM regularizer [34].
The number of epochs was set to 120, and the initial learning
rate was set to 10−3. Processing the 10,000 phase maps per
epoch takes about 15 min in our desktop computer loaded with
an Nvidia RTX2080TI GPU, leading to a design time of nearly
30 h for every DPWFS version.

B. Simulation Results

1. Plain Training
We train the first instance of the DPWFS without noise in the
measurements. We train with a very strong turbulence range,
D∕r0 � 15 to 40 (DWPFS-R1), forcing the DE to adapt to a
region where the unmodulated PWFS is clearly within the non-
linear regime, as seen in the dotted red line in Fig. 4. In fact, the
nonmodulated PWFS only provides accurate estimations be-
low D∕r0 � 5.

15101520253035404550
0

0.1

0.2

0.3

0.4 PWFS-M0
PWFS-M1
PWFS-M2
PWFS-M3
DPWFS-R1

R
M

S
E

 [r
ad

ia
ns

]

Fig. 4. Estimation performance results using noiseless measure-
ments for a variety of turbulence strengths. The PWFS at different
modulation levels is compared with the DPWFS-R1 trained without
noise. Each data point is the mean of 10,000 realizations.

Research Article Vol. 12, No. 2 / February 2024 / Photonics Research 305



Estimation results when testing with an even wider turbu-
lence range (1 to 50 D∕r0), in contrast with the training, are
shown in Fig. 4. When comparing the nonmodulated PWFS
and the optically preconditioned DPWFS, we can clearly ob-
serve that the error is vastly diminished within and even beyond
the training regime, and it is still competitive for very weak,
untrained turbulence regimes, where the PWFS often excels.

We compare the results with the performance of the PWFS
with and without modulation, being PWFS-M0 the nonmo-
dulated version, while PWFS-M1, PWFS-M2, or PWFS-M3
is the PWFS modulated with 1λ∕D, 2λ∕D, or 3λ∕D, respec-
tively. When testing with beam modulation applied to the mea-
surement process of the PWFS, we can note, as expected, that
modulation is useful to dramatically extend the linear range of
the PWFS. Nevertheless, the DPWFS-R1 outperforms the
PWFS with or without modulation up to 2λ∕D at all turbu-
lence levels and resembles the performance of the PWFS-M3.
Note that the DPWFS-R1 was able to improve the perfor-
mance of the unmodulated PWFS-M0 even beyond the train-
ing turbulence regime.

Now, we proceed to check the overall performance of our
proposed optical preconditioner in terms of sensitivity s, linear-
ity d, and SD factor sd, obtained according to Eqs. (9)–(11),
respectively [5]. The comparison results between the DPWFS
and the original PWFS for different modulations are presented
in Fig. 5. We can observe that the sensitivity is lower for the
DPWFS on the low-order Zernike modes, nearly matching
the largely modulated PWFS at 3λ∕D. On the other hand,
for high-order modes, the sensitivity is slightly increased for
the DPWFS in contrast to the PWFS.

When analyzing the linearity, we can observe that the
DPWFS-R1 provides an overall improvement for the whole
range of spatial frequencies, in contrast with the unmodulated
PWFS and the PWFS with 1λ∕D of modulation. Overall, the
DPWFS-R1 mostly matches the PWFS-M2, only decreasing its
performance for very low spatial frequencies. Finally, the com-
bined metric sd shows that the DPWFS-R1 performs a bit
worse on the low-order modes, while at higher-order modes,
beyond radial order 5, it starts to become superior to the
PWFS. The mixture of features in terms of sensitivity and

linearity shows that the DPWFS-R1 is actually acting as a
PWFS that has been modulated.

2. Closed-loop AO Simulation
We performed a simulation to validate the usefulness of the
proposed DPWFS in an AO application under realistic turbu-
lence conditions. We generated a sequence of turbulent phase
patterns at D∕r0 � 35 sampled at 250 Hz, considering a tele-
scope size of 1.5 m and a Fried parameter close to r0 � 4 cm.
The results comparing the closed-loop performance for noise-
less measurements of the PWFS with and without modulation
against the DPWFS-R1 are depicted in Fig. 6.

At this turbulence strength, we can barely close the AO loop
with the unmodulated PWFS, while we can comfortably close
it with the DPWFS-R1, which can even adapt faster than the
PWFS-M2, which corroborates that the amount of passive
modulation achieved by the DPWFS-R1 is larger than 2λ∕D.
Even though the PWFS-M2 can approach the estimation per-
formance in the closed loop of the DPWFS-R1, in the inset of
Fig. 6 we can observe that the final reconstructed PSF achieves
a larger Strehl ratio, over 0.28 (DPWFS-R1) in contrast with
0.23 (PWFS-M2).

3. Testing with Noise
We added noise to the measurements to understand its impact
on the performance of the PWFS and DPWFS. For that, we
simulate both photon and readout noise. The photon noise is
modeled as a Poisson distribution as follows:

Impn � QE�Poiss�I � Bp� − Bp�, (19)

where Im is the intensity at the detector, Bp is the number of
background photons, and QE is the quantum efficiency of the
sensor. On the other hand, the readout noise is modeled as an
additive Gaussian noise as follows:

Imrn � Im� nr , (20)

where Im is the intensity at the detector and nr is a pseudo-
random white noise variable with zero mean and standard
deviation σ.

Figure 7 shows the performance results obtained when con-
sidering noisy measurements using parameters of σ � 1,
Bp � 0.1, and QE � 1. Now, the PWFS without modulation
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Fig. 5. Comparison results for the sensitivity s, linearity d, and SD
factor sd for the PWFS at different modulation levels and the
DPWFS-R1.

Fig. 6. Simulation of a closed-loop AO system with a turbulence
strength of D∕r0 � 35. We compare the evolution of the wavefront
error for the unmodulated PWFS-M0, PWFS-M1 with 1λ∕D, PWFS-
M2 with 2λ∕D, and the DPWFS-R1, after closing the loop at frame
45 with a closed-loop gain of k � 0.3. Inset, comparison of the
reconstructed PSF and Strehl ratio achieved at the last frame.
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is barely affected by noise, in contrast with the DPWFS-R1,
which is clearly affected at weak turbulence, which in fact cor-
relates with the sensitivity issues reported in Fig. 5.
Nevertheless, and despite being very close in terms of sensitiv-
ity, the performance for the DPWFS-R1 is always superior to
the PWFS modulated at 3λ∕D, keeping a great performance at
higher turbulences.

We devise two possible approaches to handle noise and per-
haps increase the sensitivity at the potential expense of a slight
loss of linearity. First, we may believe that the turbulence range
used to train the DPWFS-R1 was too strong, so there was a loss
of attention to the small turbulence regime. Also, we may also
think that using an extended range would be best; however,
optimizing over the full range of turbulence was not as effective,
leading to worse results over the whole range. Therefore, we
train a new version of the DPWFS using noiseless measure-
ments at a softer turbulence range within D∕r0 � 5 to 20
(DWPFS-R2). Second, we also know from the neural network
literature [35] that adding noise to the training process has a
regularization effect. By decreasing the possibility of overfitting
the training data, training with noise should increase the ro-
bustness of the trained optical layer. Therefore, we retrain
the DPWFS-R1 using its original turbulence range but now
using noisy measurements (DPWFS-N1), affected solely by
readout noise with σ � 1.

4. Training with Alternative Turbulence Range
In this case, we are going to explore whether or not training the
DPWFS with a moderate turbulence range may improve its
robustness to noise. The DPWFS-R2 is trained with a turbu-
lence range within D∕r0 � 5 to 20 and noiseless measure-
ments. We can observe the performance of the new DE
under noise in Fig. 7, where we can notice a better immunity
to noise at weaker turbulence levels, improving over the former
DPWFS-R1 and being as competitive as the unmodulated
PWFS. However, we can also notice that the improvement
of the DPWFS-R2 at strong turbulence is not as solid
as the DPWFS-R1 or the PWFS-M3, although it is still

noticeably better than the PWFS without modulation, resem-
bling what is expected for the PWFS at a lower modulation
level, as seen in former Fig. 4.

As shown in Fig. 8, it is interesting to note that the sensi-
tivity of the DPWFS-R2 is able to outperform the DPWFS-R1
and even the PWFS-M3, which corroborates its good perfor-
mance at very weak turbulence levels. Nonetheless, the PWFS-
M0 is unbeatable at the lowest orders. On the contrary, the
DPWFS-R2 loses a bit of linearity, in contrast with the
DPWFS-R1, though it is still superior to the PWFS without
modulation.

5. Training with Noise
Given the former results for noisy measurements, we also ex-
plore whether or not training the DPWFS with noise improves
its robustness. In this opportunity, we train a new DE with the
same original data set for DWPFS-R1—with turbulence from
D∕r0 � 15 to 40—with the addition of readout noise of σ � 1
to the measurements. We can observe the performance of the
DPWFS-N1 in Fig. 7, where we can notice a better immunity
to noise at weaker turbulence levels, improving over the former
DPWFS-R1 and being more competitive to the PWFS-M0,
though not as close as the DPWFS-R2. However, we can also
notice that the improvement in dynamic range at large turbu-
lence levels of the DPWFS-N1 is not as strong as the noiseless
DPWFS-R1, though it is only slightly worse than the PWFS-
M3 and noticeably better than the DPWFS-R2. Overall, the
DPWFS-N1 is much better than the PWFS without modula-
tion at all turbulence levels beyond D∕r0 � 10.

It is worth noting that when comparing the sensitivity
shown in Fig. 8, the DPWFS-N1 acts very similar to the
DPWFS-R2, always better than the DPWFS-R1 and the
PWFS-M3. On the other hand, the DPWFS-N1 only sacrifices
a bit of the linearity advantages offered by the DPWFS-R1,
being slightly better than the DPWFS-R2 while still being fairly
superior to the PWFS without modulation. The sd analysis is
very correlated to the reported performance results, where
training with noise finally sacrifices some dynamic range in ex-
change for a better immunity to noise at weak signals.
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Fig. 7. Estimation performance results using noisy measurements
for a variety of turbulence strengths. We added readout noise with
σ � 1 and photon noise with Bp � 0.1. The unmodulated PWFS
and modulated PWFS at 3λ∕D are compared with the DPWFS-R1
and DPWFS-R2 trained without noise for different turbulence
ranges, and the DPWFS-N1 trained with noisy measurements in
the same range as DPWFS-R1.
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Fig. 8. Comparison results for the sensitivity s, linearity d, and SD
factor sd for the unmodulated PWFS and modulated PWFS at 3λ∕D
are compared with the DPWFS-R1 and DPWFS-R2 trained without
noise for different turbulence ranges, and the DPWFS-N1 trained
with noisy measurements in the same range as DPWFS-R1.
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6. Noise Analysis
We analyze the performance of the DPWFS-R1 and DPWFS-
N1 under different noise conditions, simulating noisy measure-
ments for combinations of readout and photon noise statistics
at four fixed turbulence regimes. The results are displayed
in Fig. 9.

Overall, we can see that the PWFS is very robust to a variety
of noise distributions, showing a plain distribution for the dif-
ferent turbulence strengths. This is expected, since the PWFS-
M0 has the best overall sensitivity in our metrics, as shown in
Figs. 8 and 5. Also, both trained DPWFS versions are more
affected by noise, although the DPWFS-N1 is clearly more ro-
bust to readout noise, since it was trained for that.

For the low turbulence test shown in Fig. 9(a), we can notice
that the PWFS is superior overall, unless for very low noise
situations. Although the DPWFS-N1 offered better immunity
to readout noise than the DPWFS-R1, it seemed slightly more
affected by photon noise.

Starting at mid-turbulence levels as shown in Fig. 9(b), we
can start to see the benefits of training with noise, where the
DPWFS-N1 is always better than the PWFS-M0. For higher
turbulence levels, as seen in Figs. 9(c) and 9(d), readout noise
becomes less of an issue, while photon noise seems more harm-
ful to the performance, though the gains in dynamic range for
both DPWFSs are more evident and relevant compared with

the noise. Nonetheless, the noise seems to impact the potential
improvement in linearity.

7. Diffractive Elements
The resulting DEs after 120 epochs of training for all the ver-
sions of the DPWFS are shown in Fig. 10. Note that for
DPWFS-R1, trained for the range between D∕r0 � 15 and
40 without noise, we obtained the DE displayed in Fig. 10(a),
where we can clearly observe a cross shape in the middle sec-
tion, which will tend to soften the hard edges of the pyramid
once overimposed. This cross pattern helps in distributing the
light within neighboring pyramid faces, somehow partially em-
ulating the modulation effect. We can also see that the cross
shape lies within a circular pattern, which coincides with the
area covered by most of the energy of the projected PSFs on
top of the pyramid apex for the given turbulence range.
Overall, the rest of the diffractive patterns are just the result
of the backpropagation and most likely may only play a signifi-
cant role for stronger turbulence, redirecting light toward the
center.

The resulting DE for the DPWFS-R2 trained with the tur-
bulence range withinD∕r0 � 5 to 20 can be seen in Fig. 10(b),
where we can observe a noticeable difference from the previ-
ously trained DPWFS-R1 shown in Fig. 10(a), now display-
ing more high-frequency patterns toward the center of the

(a) (b)

(c) (d)

Fig. 9. Performance results for different combinations of photon and readout noise statistics. Each colored surface represents the RMSE fluc-
tuations for the unmodulated PWFS, DPWFS-R1, and DPWFS-N1. Every plot represents a fixed turbulence regime. (a) D∕r0 � 5;
(b) D∕r0 � 10; (c) D∕r0 � 15; (d) D∕r0 � 20. Each data point of the 20 × 20 grids corresponds to the average of 4000 realizations.
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diffractive layer area. Nevertheless, the cross shape is thinner
but still visible in the center, although the radius of the circular
area is smaller, coinciding with the smaller area illuminated by
the PSFs originating from weaker turbulence regimes. Please
note the presence of strong diagonal patterns beyond the cen-
tral circular area, which would most likely redirect light toward
the projected pupils for stronger turbulence than the ones used
for training.

Finally, the resulting DPWFS-N1 DE trained for the range
between D∕r0 � 15 and 40 with noise can be seen in
Fig. 10(c), where we can observe similarities and differences
from the DPWFS-R1 DE previously trained without noise
[shown in Fig. 10(a)]. On the one hand, the DE for DPWFS-
N1 displays fewer high-frequency features within the diffractive
pattern area, in contrast with the DPWFS-R1, practically eras-
ing portions of the diffractive features beyond the central cir-
cular area. On the other hand, the cross shape in the middle of
the diffractive area remains very similar.

After training, the net effect of all the DEs is redirecting light
trying to better distribute light between the subpupils, counter-
acting the natural behavior of the pyramidal prism without
modulation—although this always will come at the expense
of a loss of sensitivity despite the evident gains in linearity.

8. Training in the Pupil Plane
We are aware that there were previous efforts to use passive
optical modulation in exchange for active optical modulation
in PWFSs [21,22]. Nonetheless, since the original attempt was
through the addition of a diffuser plate at the pupil plane, we
also want to explore what is the effect of training a diffractive
layer in the pupil plane instead of the Fourier plane.

For that, we use the exact same training data and E2E opti-
mization procedure previously used for training DPWFS-R1,
but now we are placing the diffractive element at the pupil
plane (PUPIL-R1). Performance results in noiseless measure-
ments are shown in Fig. 11 (continuous lines), where we can
notice that either training in the Fourier plane or the pupil
plane can achieve very similar results, demonstrating an equiv-
alent improvement in the dynamic range, in contrast with the
unmodulated PWFS-M0, although the DPWFS-R1 is always
superior to the PUPIL-R1.

Now, when testing with noise (dashed lines), we can cor-
roborate that the unmodulated PWFS is barely affected, and

mostly at low turbulences. On the other hand, both
DPWFS-R1 and PUPIL-R1 are more impacted by noise, espe-
cially at weak turbulence. Although both Fourier and pupil
plane versions are able to increase the dynamic range for strong
turbulence regimes, PUPIL-R1 results are less robust than
DPWFS-R1, overall.

C. Experimental Validation

1. Optical Implementation
We perform a proof of concept for the proposed DPWFS using
the PULPOS optical bench [25], which has been envisioned to
provide multiple branches to simultaneously test a variety of
novel WFS ideas. In this case, the branch of PULPOS used in
this experiment is depicted in Fig. 12. We use a λ � 635 nm
fiber-coupled laser source (Thorlabs S1FC635) attached to an
air-spaced doublet collimator (Thorlabs F810APC-635) and a
beam expander (Thorlabs GBE02-A, L1). The beam is spatially
filtered by a 5 mm diameter aperture stop (AS). Then, the beam
passes through a 4f-system with 1× magnification (composed
by L2 and L3) and a beam splitter (BS1), being projected onto

Fig. 10. DE training results after 120 epochs. (a) Phase distribution of the DPWFS-R1 DE trained without noise; (b) phase distribution of the
DPWFS-R2 DE trained without noise; (c) phase distribution of the DPWFS-N1 DE trained with readout noise of σ � 1. For the evolution of the
training, please refer to Visualization 1.
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Fig. 11. Training results for different levels of turbulence. The con-
tinuous lines represent the testing of each turbulence profile without
noise, and the segmented line is with the same phase but now with
Bp � 0.1 photon noise applied to the measurement. The colors are
our different strategies, where red is the nonmodulated PWFS, blue
is our DPWFS-R1, and black is the PUPIL-R1. Each data point rep-
resents the mean of 10,000 realizations.
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a reflective high-speed SLM (SLM1, Meadowlark HSP1920-
488-800-HSP8) positioned at a conjugate pupil plane of the
system to imprint the phase maps that emulate the desired tur-
bulence. Then, light is redirected by BS1 toward another
1× magnification 4f-system (composed by L4 and L5) that
reaches lens L6 (400 mm) to focus the beam, generating a
Fourier plane.

To ease the experimental calibration and be able to test ei-
ther a PWFS or the newly designed DPWFS, we opted to im-
plement the digital PWFS [28] using a second SLM. Therefore,
we placed SLM2 (Thorlabs EXULUS-4K1, 3840 × 2160, 400–
850 nm, 3.74 μm pixel size) at the Fourier plane. By projecting
the digital pyramid diffraction pattern in SLM2, we use lens L15
(200 mm) to image the subpupils onto a high-speed CMOS
camera (Emergent Vision HR-500-S-M, 9 μm pixel size,
1586 frames per second). Then, we can easily swap the phase
pattern projected onto SLM2 to display the DPWFS instead,
which is a combination of the digital PWFS plus the designed
DE. In this case, we use the robust version trained with noise,
DPWFS-N1, as shown in Fig. 10(c).

2. Experimental Results
We use the exactly same test data set used in the simulations,
comprising 100 randomly generated phase maps for a variety of
turbulence strengths between D∕r0 � 1 and D∕r0 � 30.
Before testing the PWFS or DPWFS, we obtain the respective
system matrix using the first 65 Zernike coefficients (without
considering the piston). The calibration was made using an am-
plitude of 0.25 applied to the Zernike coefficients, which is
slightly larger than the simulated amplitude of 0.1. The reason
was that the limited dynamic range of 8-bits provided by the
SLM1 generated issues in the computed system matrices. Note
that all measurements were cropped using a circle mask at
the center of the detector—with the same size as any of the
projected pupils—to eliminate the zeroth-order diffraction pro-
duced by the diffractive digital pyramid, as suggested in
Ref. [28]. Then, we can test any of the systems by sequentially

projecting the test phase maps and computing the RMSE be-
tween the ground truth and the estimated coefficients.

We tested the unmodulated pyramid PWFS-M0 and then
repeated the test for a modulation of 2λ∕D (PWFS-M2), which
was digitally implemented in the same SLM2 by adding a pro-
portional tip/tilt to the PWFS pattern. We took and then
integrated 20 snapshots of equally spaced tip/tilt positions in
the unitary circle to emulate the desired beam modulation.
Both versions of the PWFS are tested against the designed
DPWFS-N1. Results can be seen in Fig. 13, where the
DPWFS-N1 presents a balanced performance overall in the
whole range of turbulence tested, only being slightly surpassed
by the unmodulated PWFS at extremely weak turbulence (see
inset) and the PWFS-M2 at strong turbulence.

The overall behavior of the DPWFS-N1 closely follows the
modulated PWFS-M2 above turbulences of D∕r0 � 10 in
terms of average trend and standard deviation. Nonetheless,
the DPWFS-N1 shows better immunity to noise at weaker tur-
bulences, even though it was never trained for that regime.
Please note, though, that the PWFS-M2 shows a smaller stan-
dard deviation at low turbulences because (see inset) the digital
modulation was captured in several measurements, naturally
filtering noise by averaging. Nonetheless, it should be noted
that the advantages offered by both the DPWFS-N1 and
the modulated PWFS-M2 diminish as the turbulence gets
stronger. This effect might be produced also by dynamic range
issues of the turbulent phase maps projected onto SLM1 that
start suffering from severe wrapping and undesired diffraction
effects.

5. CONCLUSION

The PWFS is a very sensitive device but is also highly nonlinear,
with a limited dynamic range. Although linearity can be ex-
tended by using dynamic optical modulation, it comes at
the expense of a diminished sensitivity plus the need for active
optical devices. In this work, we proposed to exchange active
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Fig. 12. Optical setup to implement the digital PWFS or the de-
signed DPWFS at the PULPOS AO bench.
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optical modulation by including a designed passive diffractive
element into the optical path of the PWFS, specifically placed
at a conjugated Fourier plane where the tip of the pyramid lies.
This DE can be considered as an optical layer that can be de-
signed under the paradigm of deep optics, using the same tools
used for the training of artificial neural networks. To design the
novel DPWFS, we developed an E2E simulation framework to
train the DE, which includes the physical propagation model of
the DPWFS and a traditional least-squares modal phase estima-
tion model. In this way, the DE can be trained using a collec-
tion of training data sets comprising pairs of input phase maps
and the desired output Zernike coefficients to be estimated.
Then, the DE acts as an optical preconditioner to the linear
inversion.

We devised a strategy to extend the dynamic range of the
DPWFS by training with data sets of strong turbulence phase
maps where the PWFS is clearly in the nonlinear regime.
Simulation results with a large range of turbulence conditions
showed a noticeable improvement in the dynamic range equiv-
alent to over 3λ∕D of modulation when using the optically pre-
conditioned DPWFS for strong turbulences, while approaching
the estimation performance of the unmodulated PWFS at weak
turbulences. Nevertheless, the sd analysis indicated that the
DPWFS presented a loss in sensitivity equivalent to the modu-
lated PWFS at high modulation, while the gain in linearity was
following the behavior of a modulated PWFS at low modula-
tions. This analysis was validated once testing the DPWFS
under noisy measurements, where the unmodulated PWFS is
very robust to noise, while the modulated versions of the PWFS
or the DPWFS were not as good, although the DPWFS was not
as affected as the PWFS with 3λ∕D of modulation. Moreover,
we tested the performance of the DPWFS in a simulated AO
experiment for a strong turbulence near the limit of the training
regime (D∕r0 � 35), reinforcing the fact that the DPWFS is
even more effective than a modulated PWFS at 2λ∕D, leading
to a faster correction and a better Strehl ratio.

To boost the sensitivity of the DPWFS, we proposed two
approaches: training with a range of medium turbulence or
training with noisy measurements. Although the two strategies
were successful in improving sensitivity, they also diminished
the gain in dynamic range in contrast to the original DPWFS.
Nonetheless, training the DPWFS with noise seemed a better
choice, not only because of the results, but also because it fits
the neural network theory in terms that noise can improve the
generalization ability of the trained layer and therefore it can
become more robust. In an additional simulation, we also dem-
onstrated that we can also train a passive diffractive element
that can be placed at the pupil plane of the PWFS, although
the Fourier plane version was more effective and robust. This
finding is interesting, since the proposed DPWFS can still be
considered as a Fourier plane WFS.

We also implemented the digital diffractive version of the
PWFS in the PULPOS AO bench, which allowed a fair com-
parison with the designed DPWFS. Experimental results vali-
dated the advantages of using the designed optical layer, where
the DPWFS was able to pair the performance of a traditional
PWFS with 2λ∕D of modulation for strong turbulence while
still approaching the nice performance of the unmodulated

PWFS at weak turbulence. Although the improvement of the
proposed DPWFS was a bit lower than what was seen in the sim-
ulations, which can be due to several experimental issues, the re-
ported results are still a clear demonstration that the proposed
designed diffractive pattern can effectively extend the dynamic
range of the PWFS without sacrificing the performance at weak
turbulence regimes, as expected for an equivalent modulation
level. Therefore, we can conclude that the DPWFS can effectively
act as a PWFS with an improved passive modulator, providing a
more advantageous compromise between linearity and sensitivity
beyond what active optical modulation may offer.

Designing and adding an optical preconditioner to the
PWFS is just the tip of the iceberg. For instance, further work
may include the co-design of one or several diffractive optical
layers with a deep neural network reconstructor. Thus, the pro-
posed methodology for the DPWFS opens the avenue for the
design of new WFSs, not only for demanding astronomical
AO, but also for sophisticated AO applications such as space
and underwater optical communications, and imaging through
scattering media in microscopy [36] and ophthalmology [37].
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